

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

УНИВЕРСАЛЬНЫЙ АВТОНОМНЫЙ БЕСПРОВОДНОЙ ИЗМЕРИТЕЛЬ-КОММУТАТОР ROSSMA HOT-AMS 1-WIRE

2

ИНФОРМАЦИЯ О ДОКУМЕНТЕ	
Заголовок	Универсальный автономный беспроводной измеритель-коммутатор ROSSMA IIOT-AMS 1-WIRE
Тип документа	Руководство по эксплуатации
Код документа	MAN-RIA1W-05
Номер и дата последней	№5 от 02.08.2024
редакции	

ЭТОТ ДОКУМЕНТ ПРИМЕНИМ К СЛЕДУЮЩИМ УСТРОЙСТВАМ

НАЗВАНИЕ ЛИНЕЙКИ	НАЗВАНИЕ УСТРОЙСТВА
ROSSMA IIOT-AMS 1-WIRE	ROSSMA IIOT-AMS 1-WIRE
	ROSSMA IIOT-AMS 1-WIRF Fx

ИСТОРИЯ РЕДАКТИРОВАНИЯ ДОКУМЕНТА

№ РЕДАКЦИИ	ДАТА	КОММЕНТАРИИ
01	04.09.2017	Дата создания документа
02	08.09.2020	Внесение данных о взрывозащите оборудования
03	12.03.2021	Редактирование документа
04	16.04.2021	Корректировка раздела «ЗАМЕНА ЭЛЕМЕНТА ПИТАНИЯ»
05	02.08.2024	Редактирование раздела 5.

MAN-RIA1W-04

ОГЛАВЛЕНИЕ

В	ВЕДЕНИЕ	4
1.	ОПИСАНИЕ И ПРИНЦИП РАБОТЫ	5
	ОПИСАНИЕ ИЗМЕРИТЕЛЯ-КОММУТАТОРА	5
	ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ	
	АЛГОРИТМ СБОРА И ПЕРЕДАЧИ ДАННЫХ	7
	ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ	8
	МАРКИРОВКА	9
	СВЕДЕНИЯ О СЕРТИФИКАЦИИ	11
2.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	12
3.	РАБОТА С ИЗМЕРИТЕЛЕМ-КОММУТАТОРОМ	14
	ОПИСАНИЕ КОНТАКТОВ	14
	ОПИСАНИЕ КОНСТРУКЦИИ	
	ИНДИКАТОРЫ И КНОПКИ	15
	ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ИЗМЕРИТЕЛЯ-КОММУТАТОРА	15
	ПРИ МОНТАЖЕ	
	ПЕРВЫЙ ЗАПУСК	
	ЗАМЕНА ЭЛЕМЕНТА ПИТАНИЯ	17
4.	ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ	20
5.	ПРОТОКОЛ ОБМЕНА	21
	КОНФИГУРИРОВАНИЕ И ПРОГРАММИРОВАНИЕ	21
	ИЗМЕРИТЕЛЯ-КОММУТАТОРА	
	ФОРМАТ ПАКЕТА С ДАННЫМИ	
	УПРАВЛЕНИЕ ИЗМЕРИТЕЛЕМ-КОММУТАТОРОМ	22
6.	ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ	26
7.	утилизация	26
8.	КОМПЛЕКТ ПОСТАВКИ	27
۵	FADAUTIANULIE OEGZATERICTRA	20

ВВЕДЕНИЕ

Руководство распространяется на измеритель-коммутатор ROSSMA IIOT-AMS 1-WIRE производства OOO «POCCMA», и определяет порядок установки, подключения и содержит команды управления.

Для обеспечения правильного функционирования установка и настройка измерителякоммутатора должны осуществляться квалифицированными специалистами.

1. ОПИСАНИЕ И ПРИНЦИП РАБОТЫ

ОПИСАНИЕ ИЗМЕРИТЕЛЯ-КОММУТАТОРА

Измеритель-коммутатор ROSSMA IIOT-AMS 1-WIRE предназначен для самостоятельного опроса цифрового датчика температуры DS18B20 по шине 1-WIRE и передачей полученных данных по беспроводной сети.

ВНИМАНИЕ: Ремонт и техническое обслуживание (кроме замены элемента питания) измерителя-коммутатора потребителем не допускается!

Измеритель-коммутатор может использоваться на объектах промышленных предприятий, инфраструктуре объектов жилищно-коммунального хозяйства, в труднодоступных местах. Измеритель-коммутатор обеспечивает возможность установки контрольно-измерительных приборов в местах, где отсутствует электропитание, работает в сложных климатических и погодных условиях.

Измеритель-коммутатор ROSSMA IIOT-AMS 1-WIRE может обеспечивать работоспособность от встроенного элемента питания, что позволяет устанавливать оборудование в труднодоступных местах, где отсутствует электропитание.

Измеритель-коммутатор предназначен для работы во взрывобезопасных и во взрывоопасных условиях. Взрывозащищенные устройства имеют вид взрывозащиты «повышенная защита вида «е»».

Взрывозащищенный измеритель-коммутатор предназначены для установки и работы во взрывоопасных зонах помещений и наружных установок согласно главе 7.3 «Электроустановки во взрывоопасных зонах» ПУЭ, и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях.

Измеритель-коммутатор с видом взрывозащиты «повышенная защита вида «е»» соответствуют требованиям ГОСТ 31610.0-2014 «Взрывоопасные среды. Часть 0. Оборудование. Общие требования», ГОСТ 31610.7-2012 «Электрооборудование для взрывоопасных газовых сред. Часть 7. Оборудование. Повышенная защита вида «е»» и выполняются с уровнем взрывозащиты «взрывобезопасный» с маркировкой по взрывозащите 1Ex e IIC T4 Gb X.

Знак «Х» в маркировке взрывозащиты указывает на особые условия эксплуатации измерителякоммутатора, а именно: диапазон рабочих температур от -55°C до +80°C.

Измеритель-коммутатор с видом взрывозащиты «повышенная защита вида «е» предназначены для работы во взрывоопасных зонах, в которых могут образовываться взрывоопасные смеси газов и паров с воздухом категории IIA, IIB, IIC по ГОСТ Р 31610.0-2014.

Измеритель-коммутатор изготавливается со встроенным элементом питания 3,6 В.

Элементом питания измерителя-коммутатора ROSSMA IIOT-AMS DRY CONTACT служит встроенная батарея ER34615M/T емкостью 14000 mAh производства Fanso, рассчитанная на срок службы до 10 лет.

ВНИМАНИЕ: Измеритель-коммутатор, предназначенный для автономной работы, оснащен встроенным элементом питания — неперезаряжаемой литий-тионилхлоридной (LiSOCL₂) батареей. Полытки зарядить батарею могут привести к возгоранию!

ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАШИШЕННОСТИ

Обеспечение взрывозащищенности измерителя-коммутатора с типом взрывозащиты «повышенная защита вида «е»» достигается следующим образом:

- Обеспечении степени защиты от внешних воздействий IP66 по ГОСТ 14254-2015 «Степени защиты, обеспечиваемые оболочками (код IP)»
- Выбора путей утечки и электрических зазоров между клеммными зажимами клеммных колодок, а также электроизоляционных материалов, удовлетворяющих ГОСТ 31610.7-2012 «Электрооборудование для взрывоопасных газовых сред. Часть 7. Оборудование. Повышенная защита вида «е»»
- Исключается опасность воспламенения от электрических разрядов при нормальных условиях эксплуатации, обслуживания и чистки по ГОСТ 31610.0-2014 «Взрывоопасные среды. Часть 0. Оборудование. Общие требования»
- Максимально допустимая температура наружной поверхности измерителякоммутатора (135°С) соответствует температурному классу Т4 по ГОСТ 31610.0-2014 «Взрывоопасные среды. Часть О. Оборудование. Общие требования»
- Обеспечение высокой механической прочности корпуса по ГОСТ 31610.0-2014 «Взрывоопасные среды. Часть О. Оборудование. Общие требования»
- Предохранение от самоотвинчивания всех болтов и крепежных элементов
- Конструкция, исключающая соскальзывание проводов в месте их присоединения по ГОСТ 31610.7-2012 «Электрооборудование для взрывоопасных газовых сред. Часть 7. Оборудование. Повышенная защита вида «е»»
- Прокладка кабеля во взрывоопасной зоне в соответствии с требованиями ПУЭ гл. 7.3 и действующих стандартов.

АЛГОРИТМ СБОРА И ПЕРЕДАЧИ ДАННЫХ

Получение данных по шине 1-WIRE осуществляется дискретно с заданным интервалом. Передача пакета с полученными данными осуществляется по беспроводной сети с периодом от 1 минуты (не рекомендуется устанавливать дискретность менее 1 минуты для обеспечения продолжительного энергонезависимого режима работы). Считанные данные сохраняются в память измерителя-коммутатора.

Управление временем выхода на связь измерителя-коммутатора, осуществляется при помощи сервера сети и может по команде быть скорректировано.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Измеритель-коммутатор предназначен для работы со следующими датчиками:

• Датчики температуры с цифровым интерфейсом 1-WIRE

Измеритель-коммутатор является устройством класса A (по классификации LoRaWAN) и обеспечивает следующий функционал:

- Поддержка ADR (Adaptive Data Rate)
- Настраиваемый по беспроводной сети LoRaWAN тип активации в сети LoRaWAN OTAA. ABP.
- Настраиваемый период выхода на связь: от 1 мин. и выше (настраивается удаленно по сети LoRaWAN). Значение по умолчанию 1 раз в час
- Поддержка отправки пакетов с подтверждением (настраивается)
- Частотный план: EU-868\RU-868. По умолчанию: RU- 868
- Количество входов: 1.

Измеритель-коммутатор работает от встроенного элемента питания 3.68. Емкость элемента питания 14000 mAh рассчитана на отправку $40\,000$ пакетов данных $\pm\,10\%$.

Если параметр «Запрашивать подтверждение» включен, то измеритель-коммутатор будет отправлять следующий пакет только после получения подтверждения о доставке предыдущего. Если такое подтверждение не получено после выполнения трех переповторов, измеритель-коммутатор завершает сеанс связи до следующего по расписанию. При этом измеритель-коммутатор не переданные данные записывает в память. Непереданные пакеты остаются в памяти измерителя-коммутатора и передаются при следующем сеансе связи.

При выключенном параметре «Запрашивать подтверждение», измеритель-коммутатор отправляет в сеть текущие данные с заданной дискретностью. Проверки доставки пакетов в таком режиме нет. Непереданных пакетов в памяти измерителя-коммутатора не остаётся.

МАРКИРОВКА

На шильдике из нержавеющей стали, расположенном на крышке измерителя-коммутатора указана следующая информация:

- Наименование изделия
- Товарный знак предприятия-изготовителя
- Сайт предприятия-изготовителя
- Надпись «Made in Russia»
- Знаки соответствия (С. С.

На металлизированную этикетку, расположенную на боковой части измерителя-коммутатора, указана следующая информация:

- Наименование изделия
- Технология передачи данных
- Серий номер измерителя-коммутатора
- Идентификаторы измерителя-коммутатора

На оборудование взрывозащищенного исполнения устанавливается дополнительная металлизированная этикетка, на которой указана следующая информация:

- Наименование изделия
- Товарный знак предприятия-изготовителя
- Маркировка взрывозащиты
- Наименование органа по сертификации взрывозащищенного оборудования
- Номер сертификата соответствия
- Знаки соответствия **ERL** Excогласно приложению 2 по TP TC «О безопасности оборудования для работы во взрывоопасных средах» 012/2011

Внутри корпуса на печатную плату нанесен номер устройства для его идентификации у изготовителя. Номер служит идентификатором с паспортными данными, которые прилагаются к измерителю-коммутатору.

В паспорте указана следующая информация:

- Наименование изделия
- Информация о версии изделия
- Ключи, необходимые для регистрации измерителя-коммутатора в сети
- Сведения об ОТК

• Месяц и год выпуска изделия

Этикетка с номером измерителя-коммутатора располагается в двух местах - на корпусе измерителя-коммутатора и на упаковочной коробке.

Идентифицировать паспорт устройства можно по номеру устройства в графе «идентификатор» - последние цифры в номере после разделителя.

Состав идентификатора: XXXXXXXXXXXXXXXXXXXXXXX – XXXXXX. Первая часть идентификатора – номер партии (part number), вторая часть – порядковый номер измерителя-коммутатора. Расшифровка part number:

Стандарт LPWAN: LW — LoRaWAN, NB — NbiOT, 6LP-6LoWPAN, LWNB — оба стандарта.

Модель измерителя--коммутатора ROSSMA

IIOT-AMS: AN-Analog, MB-Modbus, MU-Modbus

Utility, PO-Pulse, DC-Dry Contact, LD-Leak

Detector, SD-Smoke Detector, AB-Alarm Button,
CN-Can, UC-Universal Controller, 1W- 1-Wire

Степень защиты корпуса: IP56-0056, EX IP66
EX66, EX IP68- EX68 и тд.

Количество входов: X1-одноканальный, X4четыре входа и тд.

Версия измерителя-коммутатора: определяет версию аппаратной платформы и встроенного программного обеспечения.

OUI изготовителя: уникальный идентификатор компании ROSSMA в IFFF

СВЕДЕНИЯ О СЕРТИФИКАЦИИ

Изготовлено в соответствии с техническими условиями УАБИ.001.83301259.2017 ТУ. Сертификат соответствия № РОСС RU.ПБ44.H16168/23

Декларации EAЭC № RU Д-RU.PA01.B.73419/21 о соответствии требованиям Технического регламента Таможенного союза ТР TC 020/2011 "Электромагнитная совместимость технических средств"

Измеритель-коммутатор взрывозащищенного исполнения соответствует требованиям Технического Регламента Таможенного ТР ТС 012/2011 "О безопасности оборудования для работы во взрывоопасных средах". Сертификат соответствия №EAЭC RU C-RU.AД07.B.03980/21

Измеритель-коммутатор взрывозащищенного исполнения соответствует уровню IP66 по ГОСТ 51321.1. Сертификат соответствия №04ИДЮ128.RU/C02184.

Сертификат соответствия №ST.RU.0001.M0024904 о соответствии требованиям ГОСТ Р ИСО 9001-2015 (ISO 9001:2015).

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ОСНОВНЫЕ

Интерфейс подключения	Шина 1-Wire
Диапазон работы датчика DS18B20	-55+125°C
Диапазон рабочих температур измерителя- коммутатора	-55+80°C
Встроенный датчик температуры	да (отправка при каждом выходе на связь)
Измерение заряда встроенного элемента питания	да (отправка при каждом выходе на связь)
Маркировка взрывозащиты для одноканального измерителя-коммутатора взрывозащищенного исполнения	1Ex e IIC T4 Gb X, где знак X в маркировке обозначает особые условия, а именно: диапазон рабочих t°C устройства -55°C до +80°C
Интерфейс подключения	Шина 1-Wire
Диапазон работы датчика DS18B20	-55+125°C
Диапазон рабочих температур измерителя- коммутатора	-55+80°C

LoRaWAN

Класс устройства LoRaWAN	А или С
Частотный план	RU868, EU868, IN865, AS923, AU915, KR920, US915, KZ865, произвольный (на основе EU868)
Способ активации в сети LoRaWAN	АВР или ОТАА (настраивается), по умолчанию АРВ
Период выхода на связь	Настраиваемый по сети LoRaWAN
Тип антенны LoRa	внутренняя
Чувствительность	-138 dBm
Дальность радиосвязи в плотной застройке	до 5 км
Дальность радиосвязи в сельской местности	до 15 км
Мощность передатчика по умолчанию	25 мВт (настраивается)
Максимальная мощность передатчика	100 мВт

ПИТАНИЕ

- -		
Емкость встроенной батареи	14000 mAh	
КОРПУС		
Размеры корпуса, мм	Для общепромышленного исполнения: 82*80*55 Для взрывозащищенного исполнения: 80*75*55	
Степень защиты корпуса по ГОСТ 14254- 2015	IP 65 для общепромышленного исполнения IP 66 для взрывозащищенного исполнения	
Крепление	Дополнительный комплект уточняется при заказе (в дополнительный комплект входит монтажная пластина с адаптером для DIN-рейки).	

3. РАБОТА С ИЗМЕРИТЕЛЕМ-КОММУТАТОРОМ

OUNCAHNE KOHTAKTOR

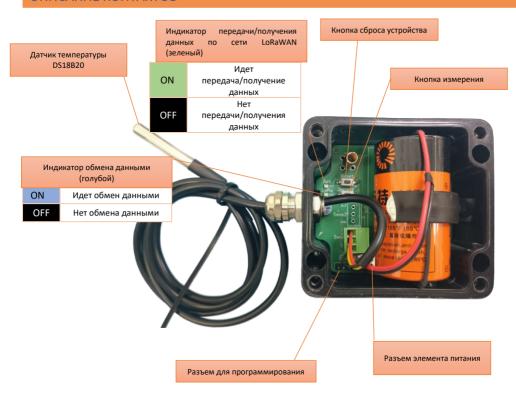


Рис.1 Описание устройства ROSSMA IIOT-AMS 1-WIRE

MAN-RIA1W-04 14

ОПИСАНИЕ КОНСТРУКЦИИ

Измеритель-коммутатор состоит из пластикового корпуса с гермовводом (необходимое количество гермовводов уточняется при заказе), в котором устанавливается печатная плата с литиевым элементом питания 3,6В и датчик температуры DS18B2O.

Крепление печатной платы осуществляется при помощи винтов из нержавеющей стали. Между основанием корпуса и крышкой установлен силиконовый уплотнитель. Основание корпуса и крышка соединяются при помощи невыпадающих винтов из нержавеющей стали.

Измеритель-коммутатор дополнительно может иметь монтажную пластину с адаптером для DIN-рейки (уточняется при заказе).

Производитель оставляет за собой право на внесение изменений в конструкции изделий без ухудшения конструктивных и функциональных характеристик и без предварительного уведомления покупателя и внесения изменений в настоящее руководство.

ИНДИКАТОРЫ И КНОПКИ

На измерителе-коммутаторе ROSSMA IIOT-AMS 1-WIRE расположены индикаторы ACT (получение данных от датчика), LORA (отправка/получение данных по беспроводной сети), DC/DC (индикатор запуска подачи электропитания от измерителя-коммутатора контрольно-измерительному прибору), Sensor (питание).

На измерителе-коммутаторе ROSSMA IIOT-AMS 1-WIRE установлены две кнопки: RESET – сброс устройства и BUTTON (Sample) – при нажатии на которую измеритель-коммутатор начинает выполнять замер и отправку данных по беспроводной сети.

ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ ИЗМЕРИТЕЛЯ-КОММУТАТОРА ПРИ МОНТАЖЕ

Измерители-коммутаторы взрывозащищенного исполнения могут устанавливаться во взрывоопасных зонах помещений и наружных установок, согласно главе 7.3 «Электроустановки во взрывоопасных зонах» ПУЭ и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях.

При монтаже датчика следует руководствоваться следующими документами:

- Правила ПТЭЭП (гл. 3.4 «Электроустановки во взрывоопасных зонах»)
- Правила ПУЭ (гл. 7.3)
- ГОСТ 31610.0-2014 «Взрывоопасные среды. Часть О. Оборудование. Общие

требования»

- ГОСТ 31610.7-2012 «Электрооборудование для взрывоопасных газовых сред. Часть 7. Оборудование. Повышенная защита вида «е»»
- Настоящее РЭ и другие нормативные документы, действующие на предприятии.

К монтажу и эксплуатации измерителя-коммутатора должны допускаться лица, изучившие настоящее руководство по эксплуатации и прошедшие соответствующий инструктаж.

Перед монтажом измеритель-коммутатор должен быть осмотрен. При этом необходимо обратить внимание на маркировку взрывозащиты, предупредительные надписи, отсутствие повреждений корпуса.

ПЕРВЫЙ ЗАПУСК

При выборе места установки измерителя-коммутатора необходимо учитывать следующие условия:

- Исполнение измерителя-коммутатора должно соответствовать устанавливаемой зоне
- Не допускается воздействие агрессивной среды на корпус и внутренние элементы печатной платы измерителя-коммутатора

Подключение измерителя-коммутатора к питанию необходимо в следующем порядке:

- Смонтировать измеритель-коммутатор в соответствии с типом крепления
- Отвернуть винты (4 шт), фиксирующие крышку на основании корпуса
- Снять крышку
- Подключить элемент питания к разъему для питания
- Проверить индикацию светодиодов
- Зафиксировать крышку на основании корпуса при помощи винтов.

Измеритель-коммутатор поддерживает два способа активации в сети LoRaWAN – ABP и ОТАА. По умолчанию изготовителем установлен способ активации – ABP.

При выявлении неработоспособности измерителя-коммутатора необходимо проверить напряжение батареи. В случае неисправности измерителя-коммутатора, необходимо передать его Предприятию Изготовителю по гарантийному талону для выявления и устранения неисправности.

MAN-RIA1W-04 16

ЗАМЕНА ЭЛЕМЕНТА ПИТАНИЯ

Для замены элемента питания измерителя-коммутатора необходимо произвести следующие действия:

 Выключить измерителькоммутатор (отсоединить разъем элемента питания от разъема на плате).

 Открутить винт, фиксирующий скобу внутри корпуса.

 Извлечь элемент питания и скобу из корпуса.

 Установить новый элемент питания в корпус. На элемент питания установить скобу и зафиксировать ее при помощи винта.

 Подключить элемент питания к разъему питания на плате.
 Проверить индикацию светодиодов.

ВНИМАНИЕ: Необходимо использовать не перезаряжаемый литийтионилхлоридный (LiSOCL₂) элемент питания ER34615M/T производства FANSO. В противном случае Производитель не гарантирует корректную работу измерителя-коммутатора!

4. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ

Заземление измерителя-коммутатора достигается путем установки кабеля ПУГВ с лужёным наконечником на петлю, расположенной непосредственно на кабельном вводе, с одной стороны и прикрепленный болтовым соединением к контуру заземления с другой стороны.

5. ПРОТОКОЛ ОБМЕНА

КОНФИГУРИРОВАНИЕ И ПРОГРАММИРОВАНИЕ ИЗМЕРИТЕЛЯ-КОММУТАТОРА

Измеритель-коммутатор поставляется со встроенным микропрограммным обеспечением, которое обеспечивает работу измерителя-коммутатора с заданными по настоящему документу характеристиками. Программирование измерителя-коммутатора производится через специальный вход для программатора.

Конфигурирование измерителя-коммутатора осуществляется с помощью специальных команд управления, которые посылаются на измеритель-коммутатор по беспроводной сети.

ФОРМАТ ПАКЕТА С ДАННЫМИ

Формат пакета данных для измерителя-коммутатора ROSSMA IIOT-AMS 1-WIRE:

Пакет с текущими данными. dd02015a01860dc511288115386221060b2874b44300000062

dd - тип пакета (cc - пакет по кнопке)

02 - количество подключенных датчиков

015а - температура на первом датчике в формате DS18B20

0186 - температура на втором датчике в формате DS18B20

Odc5 - напряжение питания в мВ

11 - температура на внутреннем датчике МК

288115386221060b - адрес первого датчика (может быть отключен)

2874b44300000062 - адрес второго датчика (может быть отключен)

Пример алгоритма преобразования температуры внешнего датчика, реализованный на языке python 3.x (https://www.python.org/):

```
if (data >> 11) & 0x01 == 0: # получаем знак (старший бит из 12) sign = 1 new_data = data else: sign = -1 new_data = 0 - data
```

value = float((new_data & 0x7FF) >> 4) # в качестве целой части берем 4 - 10 биты

включительно

value += (new data & 0x0F) / 16.0 # младшие 4 бита - это дробная часть, разрешение 0.0625

value *= sign # применяем знак print('%.4f' % value) # выводим с точностью 4 знака после запятой

УПРАВЛЕНИЕ ИЗМЕРИТЕЛЕМ-КОММУТАТОРОМ

Порт 1.

0х02 - Режим подтвержденных сообщений

Запрос: 0201, где 01 - включение/выключение подтвержденных сообщений

Ответ: 21010200, где 00 - успех

0х03 - Полный частотный план

Запрос: 0301. где 01 - включение/выключение полного частотного плана

Ответ: 21010300, где 00 - успех

0хВВ - Запрос версии

Запрос: ВВ

Ответ: bb030a01010103, где:

030а - тип устройства 0101 - версия ПО 0103 - версия платы

Запрос: ВВО1

Ответ: 2101bb030a01010103, где:

030а - тип устройства 0101 - версия ПО 0103 - версия платы

Запрос: ВВО2 (Расширенная версия)

Ответ: 2101bb0000030a000101000100010366a850e70000, где:

0000030а - тип устройства

00010100 - версия ПО (0.1.1 или 1.1 в старом формате)

01000103 - версия платы (01 - полноформатная (?), 000103 - v1.3)

66a850e7 - timestamp сборки прошивки

00 - признак Debug версии прошивки (0 - нет)

00 - резерв

0хВС - запрос времени работы с момента запуска

Запрос: ВС

Ответ: 2101bc000008ac, где 000008ac - число секунд с момента запуска

0хСА - запрос времени на устройстве

MAN-RIA1W-04 22

Запрос: СА

Ответ: 2101ca0000094c, где 0000094c - это время в формате unix timestamp

0хСВ - установка времени на устройстве

Запрос: CB66a850e7, где 66a850e7 время в формате unix timestamp

Ответ: 2101cb00, где 00 - успех

<u>0xF0 - Тест связи</u> Запрос: F0

Ответ: 2101f0ffcd22

0хСЕ - Перезапуск устройства

Запрос: СЕ Ответ: Нет

0хСС - Запрос настроек устройства

Запрос: СС

Ответ: 2101cc0000ea600000ea60ff000100, где:

0000еа60 - интервал выхода на связь

0000ea60 - интервал выхода на связь в EEPROM

ff - не используется

00 - режим подтвержденных сообщений

01 - Полный частотный план 00 - ABP / OTAA (0 - ABP)

Порт 3.

0x01 - Изменить интервал опроса текущих данных до перезапуска

Запрос, вариант 1: 01003С, где

01 - Команда

003С - время в секундах (60 сек) Запрос, вариант 2: 01000003С

01 - Команда

0000003С - время в секундах (60 сек)

Ответ не предусмотрен.

0х02 - Изменить время только следующего выхода на связь

Запрос, вариант 1: 01003С, где

01 - Команда

003С - время в секундах (60 сек) Запрос, вариант 2: 010000003С, где

24

01 - Команда

0000003С - время в секундах (60 сек)

Ответ не предусмотрен.

0х03 - Изменить интервал опроса на постоянно основе (сохраняется после перезапуска)

Запрос, вариант 1: 01003С, где

01 - Команда

003С - время в секундах (60 сек) Запрос. вариант 2: 010000003С. где

01 - Команда

0000003С - время в секундах (60 сек)

Ответ: 21030300, где 00 - результат (0 - успех. 1 - ошибка)

0x60 - поиск 1Wire датчиков

Запрос: 6000, где 00 — это сохранение результата в ЕЕРROM (0 - не сохранять, 1 - сохранять)

Ответ: 21036001288115386221060b, где:

01 - число обнаруженных датчиков (максимум 4) 288115386221060b - уникальный адрес датчика

Примечание:

Влияет на режимы работы 1 и 2.

0х61 - установка списка датчиков вручную

Запрос: 61288115386221060b2874b44300000062, где

288115386221060b - датчик 1 2874b44300000062 - датчик 2 Ответ: 2103610000, где: 00 - успех для датчика 1

00 - успех для датчика 1 00 - успех для датчика 2

Примечание:

Влияет на режимы работы 1 и 2.

0х62 - Получение текущего списка датчиков

Запрос: 62

Ответ: 21036201288115386221060b, где:

01 - текущее число датчиков

288115386221060b - адрес датчика 1

Примечание:

Данные актуальны для режимов 1, 2 и 3

0x63 - установка настроек 1Wire

Запрос: 630001, где:

MAN-RIA1W-04

00 - режим работы поиска (см. список режимов работы)

01 - включение отображения адресов датчиков в пакете с данными

Ответ: 21036300, где:

00 - успех

0x64 - запрос текущих настроек 1Wire

Запрос: 64

Ответ: 2103640300, где:

03 - режим работы поиска (см. список режимов работы)

00 - включение отображения адресов датчиков в пакете с данными

6. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ

Условия хранения измерителя-коммутатора должно осуществляться по ГОСТ 15150-69 «Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранение и транспортирования в части воздействия климатических факторов внешней среды.»

Измеритель-коммутаторы ROSSMA IIOT-AMS должны храниться в заводской упаковке в отапливаемых помещениях при температуре от $+5^{\circ}$ C до $+40^{\circ}$ C и относительной влажности не более 85%.

Транспортирование измерителя-коммутатора допускается в крытых грузовых отсеках всех типов на любые расстояния при температуре от -40°C до +80°C. Способ укладки груза на транспортное средство должен исключать возможность их перемещения.

7. УТИЛИЗАЦИЯ

Вышедший из строя измеритель-коммутатор не представляет опасности для здоровья человека и окружающей среды.

Утилизация производится в порядке, установленном Федеральным законом № 89 «Об отходах производства и потребления».

8. КОМПЛЕКТ ПОСТАВКИ

Стандартный комплект поставки измеритель-коммутатора ROSSMA IIOT-AMS 1-WIRE включает в себя:

- Измеритель-коммутатор ROSSMA IIOT-AMS 1-WIRE 1 шт.
- Паспорт 1 шт.
- Руководство по эксплуатации 1 шт.
- Упаковка 1 шт.

9. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок на измеритель-коммутатор составляет 36 месяцев с момента отгрузки.

Изготовитель исправит (путем ремонта или, по усмотрению потребителя поставки заменяющих деталей) любой дефект, который проявится в Товарах и о котором сообщено Изготовителю в течение Гарантийного срока.

Изготовитель обязан предоставить услуги по ремонту или заменить вышедший из строя измеритель-коммутатор в течение всего гарантийного срока.

Потребитель обязан соблюдать условия и правила транспортирования, хранения и эксплуатации, указанные в данном руководстве пользователя.

Изготовитель не несет ответственности за дефекты, вызванные: обычным износом, несоблюдением требований Изготовителя в части хранения, монтажа, эксплуатации или условий работы; ненадлежащим уходом; любыми изменениями или ремонтными работами, не санкционированные предварительно с Изготовителем в письменной форме.

Гарантийные обязательства не распространяются:

- На элементы питания измерителя-коммутатора, отправивших более 40 000 пакетов
- На измерители-коммутаторы с механическими, электрическими и/или иными повреждениями и дефектами, возникшими при нарушении условий транспортирования, хранения и эксплуатации;
- На измерители-коммутаторы со следами ремонта вне сервисного центра изготовителя;
- На измерители-коммутаторы со следами окисления или других признаков попадания жидкостей в корпус изделия.

При возникновении гарантийного случая следует обратиться в сервисный центр ООО РОССМА по адресу:

614064, г. Пермь, ул. Чкалова, 9И.

Контактный телефон +7 (342) 233-93-99.

Или заполнить форму на странице технической поддержки: https://rossma.ru/support/

Руководство по эксплуатации © OOO «РОССМА» 2024 г.

www.rossma.ru